

The Spectral Theorem from a nonstandard perspective

Fabrice Nonez

Department of Mathematics & Statistics
Concordia University

Descriptive Dynamics and Combinatorics Seminar

Storyline

- 1 The Spectral Theorem
- 2 Nonstandard Perspective
- 3 Standard Bias
- 4 Hull structure

- 1 The Spectral Theorem
- 2 Nonstandard Perspective

- 3 Standard Bias
- 4 Hull structure

Relevant objects

We start with

- H , separable Hilbert space (over \mathbb{R} or \mathbb{C}).

Relevant objects

We start with

- H , separable Hilbert space (over \mathbb{R} or \mathbb{C}).
- $A : \text{dom}(A) \rightarrow H$, symmetric operator on H (i.e. $\langle Ax, y \rangle = \langle x, Ay \rangle$ holds on $x, y \in \text{dom}(A)$).

Relevant objects

We start with

- H , separable Hilbert space (over \mathbb{R} or \mathbb{C}).
- $A : \text{dom}(A) \rightarrow H$, symmetric operator on H (i.e. $\langle Ax, y \rangle = \langle x, Ay \rangle$ holds on $x, y \in \text{dom}(A)$).

We assume, unless specified:

- H is infinite-dimensional.
- A is densely-defined.

The Spectral Theorem for self-adjoint operators

This is our object of study:

Theorem (Spectral Theorem)

If A is self-adjoint, then A is unitarily equivalent to a multiplication operator. In other words, there exists a measure space $(\Omega, \mathcal{A}, \mu)$, a measurable function $\lambda : \Omega \rightarrow \mathbb{R}$ and a unitary map $U : H \rightarrow L_2(\Omega, \mu)$ such that for any $x \in \text{dom}(A)$,
$$U(Ax) = \lambda \cdot U(x).$$

The Spectral Theorem for self-adjoint operators

This is our object of study:

Theorem (Spectral Theorem)

If A is self-adjoint, then A is unitarily equivalent to a multiplication operator. In other words, there exists a measure space $(\Omega, \mathcal{A}, \mu)$, a measurable function $\lambda : \Omega \rightarrow \mathbb{R}$ and a unitary map $U : H \rightarrow L_2(\Omega, \mu)$ such that for any $x \in \text{dom}(A)$,
$$U(Ax) = \lambda \cdot U(x).$$

But why?

The case for finite dimensional spaces

Suppose H is finite-dimensional:

The case for finite dimensional spaces

Suppose H is finite-dimensional:

- A has an orthonormal eigenbasis Ω

The case for finite dimensional spaces

Suppose H is finite-dimensional:

- A has an orthonormal eigenbasis Ω
- Let $\mu : \mathcal{P}(\Omega)$ be any measure with $\mu(\{f\}) > 0$ for all $f \in \Omega$

The case for finite dimensional spaces

Suppose H is finite-dimensional:

- A has an orthonormal eigenbasis Ω
- Let $\mu : \mathcal{P}(\Omega)$ be any measure with $\mu(\{f\}) > 0$ for all $f \in \Omega$
- Let $U : H \rightarrow L_2(\Omega, \mu)$ with $(U(x))(f) = \frac{\langle x, f \rangle}{\sqrt{\mu(\{f\})}}$,

$$\|U(x)\|^2 = \int_{\Omega} |U(x)|^2 d\mu = \sum_{f \in \Omega} \left| \frac{\langle x, f \rangle}{\sqrt{\mu(\{f\})}} \right|^2 \mu(\{f\}) = \|x\|^2$$

The case for finite dimensional spaces

Suppose H is finite-dimensional:

- A has an orthonormal eigenbasis Ω
- Let $\mu : \mathcal{P}(\Omega)$ be any measure with $\mu(\{f\}) > 0$ for all $f \in \Omega$
- Let $U : H \rightarrow L_2(\Omega, \mu)$ with $(U(x))(f) = \frac{\langle x, f \rangle}{\sqrt{\mu(\{f\})}}$,

$$\|U(x)\|^2 = \int_{\Omega} |U(x)|^2 d\mu = \sum_{f \in \Omega} \left| \frac{\langle x, f \rangle}{\sqrt{\mu(\{f\})}} \right|^2 \mu(\{f\}) = \|x\|^2$$

- Multiplication operator given by eigenvalue function $\lambda : \Omega \rightarrow \mathbb{R}$

General case by approximation?

We would like, in some sense, to extract the coveted objects from finite dimensional approximations.

General case by approximation?

We would like, in some sense, to extract the coveted objects from finite dimensional approximations.

Definition (Sampling sequence)

The sequence $(H_n, A_n, \Omega_n)_{n \in \mathbb{N}}$ is called a sampling sequence for A , if:

- ① $H_n < H$ and $\dim(H_n) < \infty$ for each $n \in \mathbb{N}$;
- ② $A_n : H_n \rightarrow H_n$ is a symmetric linear operator for each n ;
- ③ Ω_n is an orthonormal eigenbasis of A_n for each n ;

General case by approximation?

We would like, in some sense, to extract the coveted objects from finite dimensional approximations.

Definition (Sampling sequence)

The sequence $(H_n, A_n, \Omega_n)_{n \in \mathbb{N}}$ is called a sampling sequence for A , if:

- 1 $H_n < H$ and $\dim(H_n) < \infty$ for each $n \in \mathbb{N}$;
- 2 $A_n : H_n \rightarrow H_n$ is a symmetric linear operator for each n ;
- 3 Ω_n is an orthonormal eigenbasis of A_n for each n ;
- 4 for each $x \in \text{dom}(A)$, there exists a sequence $(x_n \in H_n)_{n \in \mathbb{N}}$ such that $x_n \rightarrow x$ and $A_n x_n \rightarrow Ax$.

General case by approximation?

We would like, in some sense, to extract the coveted objects from finite dimensional approximations.

Definition (Sampling sequence)

The sequence $(H_n, A_n, \Omega_n)_{n \in \mathbb{N}}$ is called a sampling sequence for A , if:

- 1 $H_n < H$ and $\dim(H_n) < \infty$ for each $n \in \mathbb{N}$;
- 2 $A_n : H_n \rightarrow H_n$ is a symmetric linear operator for each n ;
- 3 Ω_n is an orthonormal eigenbasis of A_n for each n ;
- 4 for each $x \in \text{dom}(A)$, there exists a sequence $(x_n \in H_n)_{n \in \mathbb{N}}$ such that $x_n \rightarrow x$ and $A_n x_n \rightarrow Ax$.

One can prove: there always exists a sampling sequence (not hard, using that $G(A) \subset H \times H$ is separable)

General case by approximation?

- Assume for each n , μ_n is a suitable measure on Ω_n
- Assume the isometry $U_n : H_n \rightarrow L_2(\Omega_n, \mu_n)$ is defined as earlier
- U_n is a unitary equivalence between A_n and eigenvalue function λ_n

General case by approximation?

- Assume for each n , μ_n is a suitable measure on Ω_n
- Assume the isometry $U_n : H_n \rightarrow L_2(\Omega_n, \mu_n)$ is defined as earlier
- U_n is a unitary equivalence between A_n and eigenvalue function λ_n
- When is there a "limit space $(\Omega_n, \mu_n) \rightarrow (\Omega, \mu)$ " inducing suitable $U : H \rightarrow L_2(\Omega, \mu)$ and $\lambda : \Omega \rightarrow \mathbb{R}$? in what sense is this described?

General case by approximation?

- Assume for each n , μ_n is a suitable measure on Ω_n
- Assume the isometry $U_n : H_n \rightarrow L_2(\Omega_n, \mu_n)$ is defined as earlier
- U_n is a unitary equivalence between A_n and eigenvalue function λ_n
- When is there a "limit space $(\Omega_n, \mu_n) \rightarrow (\Omega, \mu)$ " inducing suitable $U : H \rightarrow L_2(\Omega, \mu)$ and $\lambda : \Omega \rightarrow \mathbb{R}$? in what sense is this described?
- One way (not the only one!): Consider one single "infinitely good" "finite dimensional" approximation, and work from its induced measure

- 1 The Spectral Theorem
- 2 Nonstandard Perspective

- 3 Standard Bias
- 4 Hull structure

* Extensions

- Informally, for any "classical" structure V , *V is a corresponding "nonstandard" structure

* Extensions

- Informally, for any "classical" structure V , *V is a corresponding "nonstandard" structure
- Every object o , set S , relation R and function f of V has their equivalent *o , *S , *R , *f on *V (sometimes, we omit * symbol to lighten the notation)

* Extensions

- Informally, for any "classical" structure V , *V is a corresponding "nonstandard" structure
- Every object o , set S , relation R and function f of V has their equivalent *o , *S , *R , *f on *V (sometimes, we omit * symbol to lighten the notation)
- *V will have the same logic "behavior" as V (Transfer principle).

* Extensions

- Informally, for any "classical" structure V , *V is a corresponding "nonstandard" structure
- Every object o , set S , relation R and function f of V has their equivalent *o , *S , *R , *f on *V (sometimes, we omit * symbol to lighten the notation)
- *V will have the same logic "behavior" as V (Transfer principle).
- ${}^*|_V : V \rightarrow {}^*V$ is a natural inclusion, so we identify ${}^*x = x$ for $x \in V$. This way, $V \subset {}^*V$

* Extensions

- Informally, for any "classical" structure V , *V is a corresponding "nonstandard" structure
- Every object o , set S , relation R and function f of V has their equivalent *o , *S , *R , *f on *V (sometimes, we omit * symbol to lighten the notation)
- *V will have the same logic "behavior" as V (Transfer principle).
- ${}^*|_V : V \rightarrow {}^*V$ is a natural inclusion, so we identify ${}^*x = x$ for $x \in V$. This way, $V \subset {}^*V$
- *V may be much, much larger than V , for any infinite V .

Hyperreals

- $({}^* \mathbb{R}, +, \cdot, <)$: Non-Archimedean ordered field

Hyperreals

- $({}^* \mathbb{R}, +, \cdot, <)$: Non-Archimedean ordered field
- $x \in {}^* \mathbb{R}$ is finite if there is $n \in \mathbb{N}$ such that $|x| < n$
- $x \in {}^* \mathbb{R}$ is infinitesimal if for all $n \in \mathbb{N}$, $|x| < \frac{1}{n}$
- $x \simeq y$ if $x - y$ is infinitesimal

Hyperreals

- $({}^* \mathbb{R}, +, \cdot, <)$: Non-Archimedean ordered field
- $x \in {}^* \mathbb{R}$ is finite if there is $n \in \mathbb{N}$ such that $|x| < n$
- $x \in {}^* \mathbb{R}$ is infinitesimal if for all $n \in \mathbb{N}$, $|x| < \frac{1}{n}$
- $x \simeq y$ if $x - y$ is infinitesimal
- for every finite $x \in {}^* \mathbb{R}$, there exists a unique $s \in \mathbb{R}$ such that $x \simeq s$.
- This defines the standard part function $\text{st} : \text{Fin}({}^* \mathbb{R} \rightarrow \mathbb{R})$

Hyperreals

- $({}^* \mathbb{R}, +, \cdot, <)$: Non-Archimedean ordered field
- $x \in {}^* \mathbb{R}$ is finite if there is $n \in \mathbb{N}$ such that $|x| < n$
- $x \in {}^* \mathbb{R}$ is infinitesimal if for all $n \in \mathbb{N}$, $|x| < \frac{1}{n}$
- $x \simeq y$ if $x - y$ is infinitesimal
- for every finite $x \in {}^* \mathbb{R}$, there exists a unique $s \in \mathbb{R}$ such that $x \simeq s$.
- This defines the standard part function $\text{st} : \text{Fin}({}^* \mathbb{R} \rightarrow \mathbb{R})$
- If (X, d) is metric space, $x \in {}^* X$ is nearstandard if there is $s \in X$ such that ${}^* d(x, s) \simeq 0$; we define $s = \text{st}(x)$.

Nonstandard analysis

- With use of Transfer Principle and $V \subsetneq {}^*V$ for infinite V , we can intuitively characterize many properties of analysis

Nonstandard analysis

- With use of Transfer Principle and $V \subsetneq {}^*V$ for infinite V , we can intuitively characterize many properties of analysis
- $\lim_{n \rightarrow \infty} x_n = x$ iff for any infinite $N \in {}^*\mathbb{N}$, ${}^*x_N \simeq x$
- f is continuous at x_0 iff ${}^*f(x) \simeq f(x_0)$ whenever $x \simeq x_0$
- X is compact iff every $x \in {}^*X$ is nearstandard

Internal sets

- $(V \cup \mathcal{P}(V), \in)$ is itself a (relational) structure, on which we can apply $*$
- We have a natural inclusion ${}^*\mathcal{P}(V) \subset \mathcal{P}({}^*V)$ with $S \leftrightarrow \{x \in {}^*V \mid x ({}^* \in) S\}$
- Internal subsets of *V : elements of ${}^*\mathcal{P}(V)$

Internal sets

- $(V \cup \mathcal{P}(V), \in)$ is itself a (relational) structure, on which we can apply *
- We have a natural inclusion ${}^*\mathcal{P}(V) \subset \mathcal{P}({}^*V)$ with $S \leftrightarrow \{x \in {}^*V \mid x (* \in) S\}$
- Internal subsets of *V : elements of ${}^*\mathcal{P}(V)$
- Some internal sets: *S , any finite $F \subset {}^*V$, $\{n \in {}^*N \mid n \leq N\}$ given some infinite $N \in {}^*\mathbb{N}$, any set defined with only internal objects and the language of V .
- Some external sets: \mathbb{N} (or any infinite set with only standard elements), $\{ \text{infinite hypernatural} \}$, $\{x \in {}^*\mathbb{R} \mid \text{st}(x) = 3\}$

Internal sets

- $(V \cup \mathcal{P}(V), \in)$ is itself a (relational) structure, on which we can apply *
- We have a natural inclusion ${}^*\mathcal{P}(V) \subset \mathcal{P}({}^*V)$ with $S \leftrightarrow \{x \in {}^*V \mid x (* \in) S\}$
- Internal subsets of *V : elements of ${}^*\mathcal{P}(V)$
- Some internal sets: *S , any finite $F \subset {}^*V$, $\{n \in {}^*N \mid n \leq N\}$ given some infinite $N \in {}^*\mathbb{N}$, any set defined with only internal objects and the language of V .
- Some external sets: \mathbb{N} (or any infinite set with only standard elements), { infinite hypernatural }, $\{x \in {}^*\mathbb{R} \mid \text{st}(x) = 3\}$
- Transfer Principle: transfers only for internal objects, ex:

$$\forall S \in \mathcal{P}(\mathbb{N})((1 \in S \wedge \forall n \in \mathbb{N}(n \in S \rightarrow n + 1 \in S)) \rightarrow S = \mathbb{N})$$

Hyperfinite

- S is hyperfinite if $S \in {}^*\{ \text{ finite subsets of } V \} \subset {}^*\mathcal{P}(V)$
- ex: $\{n \in {}^*\mathbb{N} \mid n \leq N\}$ for any $N \in {}^*\mathbb{N}$
- Anything we can do with finites, we can do internally with hyperfinites (ex: internal sums over hyperfinite sets)

Hyperfinite

- S is hyperfinite if $S \in {}^*\{ \text{ finite subsets of } V \} \subset {}^*\mathcal{P}(V)$
- ex: $\{n \in {}^*\mathbb{N} \mid n \leq N\}$ for any $N \in {}^*\mathbb{N}$
- Anything we can do with finites, we can do internally with hyperfinites (ex: internal sums over hyperfinite sets)
- Enlargement Theorem: There exists an extension * and hyperfinite V_F such that $V \subset V_F \subset {}^*V$ regardless of $|V|$

Nonstandard sampling

Given sampling sequence $(H_n, A_n, \Omega_n)_{n \in \mathbb{N}}$ and infinite $N \in {}^*\mathbb{N}$, let $(\tilde{H}, \tilde{A}, \tilde{\Omega})$ be given by $\tilde{H} = {}^*H_N$, $\tilde{A} = {}^*A_N$, $\tilde{\Omega} = {}^*\Omega_N$.

Nonstandard sampling

Given sampling sequence $(H_n, A_n, \Omega_n)_{n \in \mathbb{N}}$ and infinite $N \in {}^* \mathbb{N}$, let $(\tilde{H}, \tilde{A}, \tilde{\Omega})$ be given by $\tilde{H} = {}^* H_N$, $\tilde{A} = {}^* A_N$, $\tilde{\Omega} = {}^* \Omega_N$. We have:

- \tilde{H} is a ${}^* \mathbb{K}$ subspace of ${}^* H$, and ${}^* \dim(\tilde{H}) \in {}^* \mathbb{N}$
- \tilde{A} is an internal symmetric operator on \tilde{H}
- $\tilde{\Omega}$ is a (hyperfinite) orthonormal eigenbasis of \tilde{A}
- For any $x \in \text{dom}(A)$, there exists $\tilde{x} \in \tilde{H}$ such that $x = \text{st}(\tilde{x})$ and $Ax = \text{st}(\tilde{A}\tilde{x})$.

Nonstandard sampling

Given sampling sequence $(H_n, A_n, \Omega_n)_{n \in \mathbb{N}}$ and infinite $N \in {}^*\mathbb{N}$, let $(\tilde{H}, \tilde{A}, \tilde{\Omega})$ be given by $\tilde{H} = {}^*H_N$, $\tilde{A} = {}^*A_N$, $\tilde{\Omega} = {}^*\Omega_N$. We have:

- \tilde{H} is a ${}^*\mathbb{K}$ subspace of *H , and ${}^*\dim(\tilde{H}) \in {}^*\mathbb{N}$
- \tilde{A} is an internal symmetric operator on \tilde{H}
- $\tilde{\Omega}$ is a (hyperfinite) orthonormal eigenbasis of \tilde{A}
- For any $x \in \text{dom}(A)$, there exists $\tilde{x} \in \tilde{H}$ such that $x = \text{st}(\tilde{x})$ and $Ax = \text{st}(\tilde{A}\tilde{x})$.
- $\tilde{\mu} = {}^*\mu_N$ is an internal measure on the internal algebra $\tilde{\mathcal{A}} = {}^*\mathcal{P}(\tilde{\Omega})$
- $\tilde{U} : \tilde{H} \rightarrow {}^*L_2(\tilde{\Omega}, \tilde{\mu})$ is an internal unitary equivalence between \tilde{A} and $\tilde{\lambda} = {}^*\lambda_N$

Loeb measure space

- For now, it is meaningless, abstract mess

Loeb measure space

- For now, it is meaningless, abstract mess
- Assuming $\tilde{\mu}$ is probability, we would want to consider $B \rightarrow \text{st}(\tilde{\mu}(B))$, but

Loeb measure space

- For now, it is meaningless, abstract mess
- Assuming $\tilde{\mu}$ is probability, we would want to consider $B \rightarrow \text{st}(\tilde{\mu}(B))$, but
- $\tilde{\mathcal{A}}$ is NOT a σ -algebra (though it is an *internal* ${}^*\sigma$ -algebra)

Loeb measure space

- For now, it is meaningless, abstract mess
- Assuming $\tilde{\mu}$ is probability, we would want to consider $B \rightarrow \text{st}(\tilde{\mu}(B))$, but
- $\tilde{\mathcal{A}}$ is NOT a σ -algebra (though it is an *internal* * σ -algebra)

We use the powerful Loeb measure Theorem:

Theorem (Loeb measure Theorem)

There exists a (real, external) probability space $(\tilde{\Omega}, \mathcal{A}_L, \mu_L)$ such that

- $\tilde{\mathcal{A}} \subset \mathcal{A}_L$
- *for any $B \in \mathcal{A}$, $\mu_L(B) = \text{st}(\tilde{\mu}(B))$.*

- 1 The Spectral Theorem
- 2 Nonstandard Perspective

- 3 Standard Bias
- 4 Hull structure

Problem 1

- We consider $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ with $U_L(x) = \text{st} \circ \tilde{U}(x)$.
- We can show that $(\tilde{U}(x))(f)$ is finite for μ_L -almost all $f \in \tilde{\Omega}$.
Also, $U_L(x)$ is measurable

Problem 1

- We consider $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ with $U_L(x) = \text{st} \circ \tilde{U}(x)$.
- We can show that $(\tilde{U}(x))(f)$ is finite for μ_L -almost all $f \in \tilde{\Omega}$.
Also, $U_L(x)$ is measurable
- We want U_L as our isometry. For that, we need

$$\text{st} \left({}^* \int_{\tilde{\Omega}} |\tilde{U}(x)|^2 d\tilde{\mu} \right) = \int_{\tilde{\Omega}} \text{st}(|\tilde{U}(x)|^2) d\mu_L$$

Problem 1

- We consider $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ with $U_L(x) = \text{st} \circ \tilde{U}(x)$.
- We can show that $(\tilde{U}(x))(f)$ is finite for μ_L -almost all $f \in \tilde{\Omega}$.
Also, $U_L(x)$ is measurable
- We want U_L as our isometry. For that, we need

$$\text{st} \left({}^* \int_{\tilde{\Omega}} |\tilde{U}(x)|^2 d\tilde{\mu} \right) = \int_{\tilde{\Omega}} \text{st}(|\tilde{U}(x)|^2) d\mu_L$$

It does not always hold (some dirac-like function?)

Problem 1

Theorem (S-integrability)

For any internal function $f : \tilde{\Omega} \rightarrow {}^*{\mathbb R}_{\geq 0}$, the following are equivalent:

- for any internal $E \subset \tilde{\Omega}$ with $\tilde{\mu}(E) \simeq 0$, ${}^* \int_E f d\tilde{\mu} \simeq 0$
- f is μ_L almost-always nearstandard valued, and
 $\text{st} \left(\int_{\tilde{\Omega}} f d\tilde{\mu} \right) = \int_{\tilde{\Omega}} \text{st} \circ f d\mu_L$

Problem 1

Theorem (S-integrability)

For any internal function $f : \tilde{\Omega} \rightarrow {}^* \mathbb{R}_{\geq 0}$, the following are equivalent:

- for any internal $E \subset \tilde{\Omega}$ with $\tilde{\mu}(E) \simeq 0$, ${}^* \int_E f d\tilde{\mu} \simeq 0$
- f is μ_L almost-always nearstandard valued, and
 $\text{st} \left(\int_{\tilde{\Omega}} f d\tilde{\mu} \right) = \int_{\tilde{\Omega}} \text{st} \circ f d\mu_L$
- We can calculate ${}^* \int_E |\tilde{U}(x)|^2 d\tilde{\mu} = \|{}^* \text{proj}_{\text{span}(E)} x\|^2$

Problem 1

Theorem (S-integrability)

For any internal function $f : \tilde{\Omega} \rightarrow {}^*\mathbb{R}_{\geq 0}$, the following are equivalent:

- for any internal $E \subset \tilde{\Omega}$ with $\tilde{\mu}(E) \simeq 0$, ${}^* \int_E f d\tilde{\mu} \simeq 0$
- f is μ_L almost-always nearstandard valued, and
 $\text{st} \left(\int_{\tilde{\Omega}} f d\tilde{\mu} \right) = \int_{\tilde{\Omega}} \text{st} \circ f d\mu_L$
- We can calculate ${}^* \int_E |\tilde{U}(x)|^2 d\tilde{\mu} = \|{}^* \text{proj}_{\text{span}(E)} x\|^2$
- We need that $\tilde{\mu}(E) \simeq 0 \implies$ for all standard $x \in H$,
 ${}^* \text{proj}_{\text{span}(E)} x \simeq 0$

Problem 2

- We want $\tilde{\lambda} : \tilde{\Omega} \rightarrow {}^*\mathbb{R}$, the eigenvalue function of \tilde{A} , to be μ_L almost always finite,
- Equivalently, for every infinite K , we want $\tilde{\mu}(B_K) \simeq 0$ with $B_K = \{f \in \tilde{\Omega} \mid |\tilde{\lambda}(f)|^2 \geq K\}$

Problem 2

- We want $\tilde{\lambda} : \tilde{\Omega} \rightarrow {}^*\mathbb{R}$, the eigenvalue function of \tilde{A} , to be μ_L almost always finite,
- Equivalently, for every infinite K , we want $\tilde{\mu}(B_K) \simeq 0$ with $B_K = \{f \in \tilde{\Omega} \mid |\tilde{\lambda}(f)|^2 \geq K\}$
- We can calculate that for any $\tilde{x} \in \tilde{H}$
$$\|{}^*\text{proj}_{\text{span}(B_K)} \tilde{x}\|^2 \leq \frac{\|\tilde{A}\tilde{x}\|^2}{K}$$
- Thus, for any standard $x \in H$, ${}^*\text{proj}_{\text{span}(B_K)} x \simeq 0$

Problem 2

- We want $\tilde{\lambda} : \tilde{\Omega} \rightarrow {}^*\mathbb{R}$, the eigenvalue function of \tilde{A} , to be μ_L almost always finite,
- Equivalently, for every infinite K , we want $\tilde{\mu}(B_K) \simeq 0$ with $B_K = \{f \in \tilde{\Omega} \mid |\tilde{\lambda}(f)|^2 \geq K\}$
- We can calculate that for any $\tilde{x} \in \tilde{H}$
$$\|{}^*\text{proj}_{\text{span}(B_K)} \tilde{x}\|^2 \leq \frac{\|\tilde{A}\tilde{x}\|^2}{K}$$
- Thus, for any standard $x \in H$, ${}^*\text{proj}_{\text{span}(B_K)} x \simeq 0$
- It would be nice if $\tilde{\mu}(B_K) \simeq 0$ followed

Standard Bias measure

Definition

The internal probability measure $\tilde{\mu}$ on ${}^*\mathcal{P}(\tilde{\Omega})$ is standard-biased if for any internal $E \in \tilde{\Omega}$, $\tilde{\mu}(E) \simeq 0$ if and only if ${}^*\text{proj}_{\text{span}(E)} x \simeq 0$ whenever $x \in H$ is standard.

Standard Bias measure

Definition

The internal probability measure $\tilde{\mu}$ on ${}^*\mathcal{P}(\tilde{\Omega})$ is standard-biased if for any internal $E \in \tilde{\Omega}$, $\tilde{\mu}(E) \simeq 0$ if and only if ${}^*\text{proj}_{\text{span}(E)} x \simeq 0$ whenever $x \in H$ is standard.

- For such a standard biased measure, we thus consider
$$\lambda_L = \text{st} \circ \tilde{\lambda}$$

Compatible standard-biased scale

There always exists $((\tilde{e}_j)_{j=1}^K, (\tilde{c}_j)_{j=1}^K)$, where

- $K \in {}^* \mathbb{N}$ is infinite, $\tilde{e}_j \in {}^* H$ and $\tilde{c}_j \in {}^* \mathbb{R}_{>0}$
- For any standard j , $\text{st}(\tilde{e}_j) = e_j \in H \setminus 0$, $\text{st}(\tilde{c}_j) = c_j \in \mathbb{R}_{>0}$

Compatible standard-biased scale

There always exists $((\tilde{e}_j)_{j=1}^K, (\tilde{c}_j)_{j=1}^K)$, where

- $K \in {}^* \mathbb{N}$ is infinite, $\tilde{e}_j \in {}^* H$ and $\tilde{c}_j \in {}^* \mathbb{R}_{>0}$
- For any standard j , $\text{st}(\tilde{e}_j) = e_j \in H \setminus 0$, $\text{st}(\tilde{c}_j) = c_j \in \mathbb{R}_{>0}$
- $(e_j)_{j \in \mathbb{N}}$: dense span in H
- $\sum_{j=1}^K \tilde{c}_j \|\tilde{e}_j\|^2 = \sum_{j \in \mathbb{N}} c_j \|e_j\|^2 = 1$

Compatible standard-biased scale

There always exists $((\tilde{e}_j)_{j=1}^K, (\tilde{c}_j)_{j=1}^K)$, where

- $K \in {}^* \mathbb{N}$ is infinite, $\tilde{e}_j \in {}^* H$ and $\tilde{c}_j \in {}^* \mathbb{R}_{>0}$
- For any standard j , $\text{st}(\tilde{e}_j) = e_j \in H \setminus 0$, $\text{st}(\tilde{c}_j) = c_j \in \mathbb{R}_{>0}$
- $(e_j)_{j \in \mathbb{N}}$: dense span in H
- $\sum_{j=1}^K \tilde{c}_j \|\tilde{e}_j\|^2 = \sum_{j \in \mathbb{N}} c_j \|e_j\|^2 = 1$

For compatibility with sampling $(\tilde{H}, \tilde{A}, \tilde{\Omega})$:

- For any $j \leq N$, $\tilde{e}_j \in \tilde{H}$
- For any standard j , $\tilde{A}\tilde{e}_j$ is nearstandard
- For any $f \in \tilde{\Omega}$, there exist $j \leq N$ with $\langle \tilde{e}_j, f \rangle \neq 0$

Compatible standard-biased scale

There always exists $((\tilde{e}_j)_{j=1}^K, (\tilde{c}_j)_{j=1}^K)$, where

- $K \in {}^* \mathbb{N}$ is infinite, $\tilde{e}_j \in {}^* H$ and $\tilde{c}_j \in {}^* \mathbb{R}_{>0}$
- For any standard j , $\text{st}(\tilde{e}_j) = e_j \in H \setminus 0$, $\text{st}(\tilde{c}_j) = c_j \in \mathbb{R}_{>0}$
- $(e_j)_{j \in \mathbb{N}}$: dense span in H
- $\sum_{j=1}^K \tilde{c}_j \|\tilde{e}_j\|^2 = \sum_{j \in \mathbb{N}} c_j \|e_j\|^2 = 1$

For compatibility with sampling $(\tilde{H}, \tilde{A}, \tilde{\Omega})$:

- For any $j \leq N$, $\tilde{e}_j \in \tilde{H}$
- For any standard j , $\tilde{A}\tilde{e}_j$ is nearstandard
- For any $f \in \tilde{\Omega}$, there exist $j \leq N$ with $\langle \tilde{e}_j, f \rangle \neq 0$

Induces standard-biased probability internal measure $\tilde{\mu}$ on $\tilde{\Omega}$ with

$$\tilde{\mu}(V) = \sum_{j=1}^K \tilde{c}_j \|{}^* \text{proj}_{{}^* \text{span}(V)} \tilde{e}_j\|^2$$

The Spectral Embedding Theorem

We can then establish the following:

Theorem (The Spectral Embedding Theorem)

If $\tilde{\mu}$ is standard-biased, then $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ is an isometry. Furthermore, for any $x \in \text{dom}(A)$, $U_L(Ax) = \lambda_L \cdot U_L(x)$.

The Spectral Embedding Theorem

We can then establish the following:

Theorem (The Spectral Embedding Theorem)

If $\tilde{\mu}$ is standard-biased, then $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ is an isometry. Furthermore, for any $x \in \text{dom}(A)$, $U_L(Ax) = \lambda_L \cdot U_L(x)$.

- Different from the initial goal: A need not be self-adjoint, only symmetric, trade-off with U_L not being unitary, only an isometric embedding

The Spectral Embedding Theorem

We can then establish the following:

Theorem (The Spectral Embedding Theorem)

If $\tilde{\mu}$ is standard-biased, then $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ is an isometry. Furthermore, for any $x \in \text{dom}(A)$, $U_L(Ax) = \lambda_L \cdot U_L(x)$.

- Different from the initial goal: A need not be self-adjoint, only symmetric, trade-off with U_L not being unitary, only an isometric embedding
- Directly equivalent with other forms of the Spectral Theorem: if A is self-adjoint, $U_L(H)$ reduces for the multiplication operator induced by λ_L , and spectral measure of A pulls back

The Spectral Embedding Theorem

We can then establish the following:

Theorem (The Spectral Embedding Theorem)

If $\tilde{\mu}$ is standard-biased, then $U_L : H \rightarrow L_2(\tilde{\Omega}, \mu_L)$ is an isometry. Furthermore, for any $x \in \text{dom}(A)$, $U_L(Ax) = \lambda_L \cdot U_L(x)$.

- Different from the initial goal: A need not be self-adjoint, only symmetric, trade-off with U_L not being unitary, only an isometric embedding
- Directly equivalent with other forms of the Spectral Theorem: if A is self-adjoint, $U_L(H)$ reduces for the multiplication operator induced by λ_L , and spectral measure of A pulls back
- $(\tilde{\Omega}, \mathcal{A}_L, \mu_L)$ still heavily dependent on both * and infinite N , and $L_2(\Omega_L, \mu_L)$ non-separable. This needs a sequel...

- 1 The Spectral Theorem
- 2 Nonstandard Perspective

- 3 Standard Bias
- 4 Hull structure

Internal pseudometric

- Using the standard-biased scale, we can construct internal pseudometric \tilde{d} on $\tilde{\Omega}$ such that $\tilde{d}(f_1, f_2) \simeq 0$ iff $(\tilde{U}(\tilde{e}_j))(f_1) \simeq (\tilde{U}(\tilde{e}_j))(f_2)$ for all standard j

Internal pseudometric

- Using the standard-biased scale, we can construct internal pseudometric \tilde{d} on $\tilde{\Omega}$ such that $\tilde{d}(f_1, f_2) \simeq 0$ iff $(\tilde{U}(\tilde{e}_j))(f_1) \simeq (\tilde{U}(\tilde{e}_j))(f_2)$ for all standard j
- Induces quotient space $\hat{\Omega}$, natural map $\hat{\nu} : \tilde{\Omega} \rightarrow \hat{\Omega}$
- the pushforward \hat{d} on $\hat{\Omega}$ turns it into a compact metric space

Internal pseudometric

- Using the standard-biased scale, we can construct internal pseudometric \tilde{d} on $\tilde{\Omega}$ such that $\tilde{d}(f_1, f_2) \simeq 0$ iff $(\tilde{U}(\tilde{e}_j))(f_1) \simeq (\tilde{U}(\tilde{e}_j))(f_2)$ for all standard j
- Induces quotient space $\hat{\Omega}$, natural map $\hat{\nu} : \tilde{\Omega} \rightarrow \hat{\Omega}$
- the pushforward \hat{d} on $\hat{\Omega}$ turns it into a compact metric space
-

$$\tilde{d}(f_1, f_2) = \sum_{j=1}^K \tilde{c}_j^{\frac{3}{2}} \|\tilde{e}_j\|^2 |(\tilde{U}(\tilde{e}_j))(f_1) - (\tilde{U}(\tilde{e}_j))(f_2)|$$

Hull space

- $\hat{\nu}$ is measurable (w.r.t. μ_L), inducing the pushforward probability space $(\hat{\Omega}, \text{Borel}(\hat{\Omega}), \hat{\mu})$
- all elements of $U_L(H)$ can be pushed down $\hat{\nu}$, inducing isometry $\hat{U} : H \rightarrow L_2(\hat{\Omega}, \hat{\mu})$
- there exists $\hat{\lambda} : \hat{\Omega} \rightarrow \mathbb{R}$ such that μ_L -almost-everywhere, $\hat{\lambda} \circ \hat{\nu} = \lambda_L$

Hull space

- $\hat{\nu}$ is measurable (w.r.t. μ_L), inducing the pushforward probability space $(\hat{\Omega}, \text{Borel}(\hat{\Omega}), \hat{\mu})$
- all elements of $U_L(H)$ can be pushed down $\hat{\nu}$, inducing isometry $\hat{U} : H \rightarrow L_2(\hat{\Omega}, \hat{\mu})$
- there exists $\hat{\lambda} : \hat{\Omega} \rightarrow \mathbb{R}$ such that μ_L -almost-everywhere, $\hat{\lambda} \circ \hat{\nu} = \lambda_L$

Thus, we have the following:

Theorem (Spectral Embedding Theorem, metric version)

For any densely-defined symmetric operator A on separable \mathbb{K} -Hilbert space H , there exists a compact metric space Ω , a probability measure μ on $\text{Borel}(\Omega)$, an isometric embedding $U : H \rightarrow L_2(\Omega, \mu)$ and a self-adjoint multiplication operator T on $L_2(\Omega, \mu)$ such that $U \circ A \subset T \circ U$.

Shift Operator

Context

- $H = l_2(\mathbb{Z})$, $\mathbb{K} = \mathbb{C}$ and $(g_I)_{I \in \mathbb{Z}}$ canonical Hilbert basis
- $A = \frac{1}{2}(R + L)$, where R and L are the right and left shifts.

Shift Operator

Parameters:

- $\tilde{H} = {}^* \text{span}(\{{}^* g_l\}_{l=-M}^M)$ for some infinite M
- $\tilde{A} = \frac{1}{2}(\tilde{R} + \tilde{L})$, where \tilde{R} and \tilde{L} are the rotating right and left shifts on \tilde{H}

Shift Operator

Parameters:

- $\tilde{H} = {}^* \text{span}(\{{}^* g_I\}_{I=-M}^M)$ for some infinite M
- $\tilde{A} = \frac{1}{2}(\tilde{R} + \tilde{L})$, where \tilde{R} and \tilde{L} are the rotating right and left shifts on \tilde{H}
- $\tilde{\Omega} = \{f_k \mid -M \leq k \leq M\}$, with $f_k = \frac{1}{\sqrt{N}} \sum_{I=-M}^M e^{-2\pi i \frac{kl}{2M+1}} g_I$

Shift Operator

Parameters:

- $\tilde{H} = {}^* \text{span}(\{{}^* g_I\}_{I=-M}^M)$ for some infinite M
- $\tilde{A} = \frac{1}{2}(\tilde{R} + \tilde{L})$, where \tilde{R} and \tilde{L} are the rotating right and left shifts on \tilde{H}
- $\tilde{\Omega} = \{f_k \mid -M \leq k \leq M\}$, with $f_k = \frac{1}{\sqrt{N}} \sum_{I=-M}^M e^{-2\pi i \frac{kl}{2M+1}} g_I$
- $(\tilde{e}_j)_{j=1}^{2M+1} = ({}^* g_0, {}^* g_1, {}^* g_{-1}, \dots, {}^* g_M, {}^* g_{-M})$
- $\tilde{c}_j = \frac{1}{2^j(1-2^{-(2M+1)})}$ for $j \leq 2M+1$

Shift Operator

Results (up to measure-preserving homeomorphism):

- $\Omega = \mathbb{R}/\mathbb{Z}$, equipped with its usual topology
- μ : the Lebesgue measure on its borelians
- $m(t) = \cos(2\pi t)$

Shift Operator

Results (up to measure-preserving homeomorphism):

- $\Omega = \mathbb{R}/\mathbb{Z}$, equipped with its usual topology
- μ : the Lebesgue measure on its borelians
- $m(t) = \cos(2\pi t)$
- $U((a_n)_{n \in \mathbb{Z}}) = \sum_{n \in \mathbb{N}} a_n e^{2\pi i n \cdot}$, associating a sequence to its Fourier series

Differential operator on \mathbb{R}

Context:

- $H = L_2(\mathbb{R})$, with $\mathbb{K} = \mathbb{C}$
- $A = -i \frac{d}{dx}$ on $\text{dom}(A) = C_c^\infty(\mathbb{R})$

Differential operator on \mathbb{R}

Parameters:

- $\tilde{H} = {}^* \text{span}(\{1_{[\frac{k}{N}, \frac{k+1}{N}]} \}_{k=-N^2}^{N^2-1})$ for some infinite $N = N_0$!
- $\tilde{A} = -i \frac{\tilde{L} - \tilde{R}}{2/N}$ given rotating "shift" operators
- $\tilde{\Omega} = \{f_k\}_{k=-N^2}^{N^2-1}$ with $f_k = \frac{1}{\sqrt{2N}} \sum_{l=-N^2}^{N^2-1} e^{2\pi i \frac{kl}{2N^2}} 1_{[\frac{l}{N}, \frac{l+1}{N}]} \,$

Differential operator on \mathbb{R}

Parameters:

- $\tilde{H} = {}^* \text{span}(\{1_{[\frac{k}{N}, \frac{k+1}{N}]} \}_{k=-N^2}^{N^2-1})$ for some infinite $N = N_0$!
- $\tilde{A} = -i \frac{\tilde{L} - \tilde{R}}{2/N}$ given rotating "shift" operators
- $\tilde{\Omega} = \{f_k\}_{k=-N^2}^{N^2-1}$ with $f_k = \frac{1}{\sqrt{2N}} \sum_{l=-N^2}^{N^2-1} e^{2\pi i \frac{kl}{2N^2}} 1_{[\frac{l}{N}, \frac{l+1}{N}]} \cdot$
- Given $E(t) = (\frac{2}{\pi})^{\frac{1}{4}} e^{-t^2}$ on \mathbb{R} , let $e_j(t) = E(t - q_j)$ for $(q_j)_{j \in \mathbb{N}}$ being a counting of \mathbb{Q} . Scale is constructed around this

Differential operator on \mathbb{R}

Results (up to measure space equivalence):

- $\Omega = \mathbb{R}$, equipped with its usual borelian algebra (not the same topology, though)
- $\mu' = g_0 d\mu$ with $g_0(\omega) = \left(\frac{\pi}{2}\right)^{\frac{1}{2}} e^{-\frac{\pi^2 \omega^2}{2}}$

Differential operator on \mathbb{R}

Results (up to measure space equivalence):

- $\Omega = \mathbb{R}$, equipped with its usual borelian algebra (not the same topology, though)
- $\mu' = g_0 d\mu$ with $g_0(\omega) = \left(\frac{\pi}{2}\right)^{\frac{1}{2}} e^{-\frac{\pi^2 \omega^2}{2}}$
- $m(\omega) = \pi\omega$ on $\omega \in \mathbb{R}$
- $(U(h))(\omega) = \frac{(\mathcal{F}(h))(\frac{\omega}{2})}{\sqrt{2g_0(\omega)}}$, where \mathcal{F} is the Fourier transform

Differential operator on \mathbb{R}

Results (up to measure space equivalence):

- $\Omega = \mathbb{R}$, equipped with its usual borelian algebra (not the same topology, though)
- $\mu' = g_0 d\mu$ with $g_0(\omega) = \left(\frac{\pi}{2}\right)^{\frac{1}{2}} e^{-\frac{\pi^2 \omega^2}{2}}$
- $m(\omega) = \pi\omega$ on $\omega \in \mathbb{R}$
- $(U(h))(\omega) = \frac{(\mathcal{F}(h))(\frac{\omega}{2})}{\sqrt{2g_0(\omega)}}$, where \mathcal{F} is the Fourier transform

Of note:

- only elementary analysis used for calculations
- could theoretically be used to define the Fourier transform itself
- direct proofs of Plancherel and differentiation theorems

Conclusion

Thank you for your time!
Questions?